
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 40, NO 2, FEBRUARY 1992 217

Efficient Spectral Domain Analysis of Generalized

Multistrip Lines in Stratified Media Including

Thin, Anisotropic, and Lossy Substrates
Gabriel Cane, Francisco Medina, Member, IEEE, and Manuel Homo, Member, IEEE

Abstract–This paper deals with the full-wave analysis of
multiconductor microstrip lines used in electrooptic modula-

tors (EOM), MMIC or high speed VLSI applications. An ar-

bitrary number of coupled coplanar strips are embedded in a
stratified medium involving iso/anisotropic dielectric and/or
semiconductor layers. The numerical aspects of the computa-

tion of the propagation constants using the spectral domain

analysis (SDA) are stressed. An efficient scheme is used to ac-

curately compute attenuation and propagation constants and

current distributions with reasonable CPU times. Convergence
problems due to the existence of very thin layers adjacent to

the metallized interface has been explicitly considered. An al-

gorithm to compute the modal characteristic impedances is
provided regardless of the number and nature of snbstrate lay-

ers. A reciprocity related definition of modal impedances is used
in this paper. The use of this definition ensures the symmetry

of the multiport scattering matrix associated to the structure.

I. INTRODUCTION

M ICROSTRIP-like transmission lines are the most

widely used in MIC and MMIC circuits. They also

find applications in electrooptic modulators, SAW trans-

ducers and high-speed VLSI interconnects. Conse-

quently, a large amount of technical literature has been

devoted to the analysis of these transmission lines. First

of all, lossless isotropic dielectric substrates were as-

sumed by most of authors. This is a good assumption for

conventional MIC substrates. However, technological ad-

vances make it necessary to study the propagation of the

electromagnetic field in those transmission lines when

printed on a variety of anisotropic dielectric or semicon-

ductor substrates. Dielectric anisotropy often has to be

considered (e. g., silicon-on-sapphire technology, elec-

trooptic modulators and certain MIC substrates). A de-

tailed review of the role of anisotropy in integrated circuit

structures was reported in [1], and more recent works on

this subject can be found in [2] –[5] and references therein.

In addition, semiconductor materials with a wide range of

doping levels are used in monolithic technology: slow-

wave transmission lines (Schottky contact or MIS—metal-

insulator-semiconductor—stmctures) are good examples
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of its utilization. In general, MMIC and VLSI technolo-

gies imply the use of semiconducting materials submitted

to selective dc~ping process. The geometry of these con-

figurations consists of conducting strips printed on lossy

stratified substrates. Different methods have been devel-

oped to analyze single and coupled planar structures in-

cluding lossy media. Perturbational methods are pre-

cluded because the small losses condition is not fulfilled

by semiconductor materials. The simple and analytical

parallel-plate waveguide model was initially used for the

study of slow-wave structures [6]–[8]. A quasi-TEM ap-

proach based on physical considerations has been used in

[5], [91, [10]. However, for arbitrary geometries, if high
conductivity materials or high frequencies are involved,

more accurate theoretical models become necessary.

Thus, full-wave approaches were developed later, e.g.

mode matching [11], space-domain analysis [12], method

of lines [13] and spectral-domain analysis (SDA) [10],

[11], [14], [15], [16], [17]. The SDA is probably the most

simple and accurate procedure to deal with planar lines.

However, from a numerical standpoint, the application of

the SDA to the analysis of microstrip lines used in MMIC,

high-speed VILSI applications and EOM shows certain

important troubles. Part of this paper concerns this sub-

ject.

The general multistrip structure studied in this paper is

shown in Fig. 1. In the most general case, the substrates

are characterized by the following diagonal complex per-

mittivity tenscm [E.q]:

[Eeql = eo(%ff + Eyfj + CZ22); (1)

with

e.=e.a, –j%
Uco

where CYstands for x, y, z, which allows the consideration

of anisotropic permittivity (dielectrics) and/or conductiv-

ity (semiconductors, semiinsulators). Perfect zero thick-

ness conductors are also assumed. As it was stated above,

our goal is to implement an efficient SDA for this prob-

lem. When Giderkin’s method is used, the most time con-

suming part c!f the analysis is the generation of the Gal-

erkin matrix. This matrix must be computed several times

before an eigenvalue is attained. This process can be
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Fig. 1. Transverse section of a multilayered, multiconductor coplanar

transmission line with anisotropic dielectrics and semiconductors ([,<,.]).

drastically accelerated if an appropriate approximation of

the dyadic Green’s function is used. Thus, as it will be

shown later, the CPU time is kept within reasonable mar-

gins and the accuracy of the results is ensured. This

method is particularly advantageous when extremely thin

layers are adjacent to the metallized interface, since this

configuration causes poor convergence when usual tech-

niques are used. The practical significance of this case

(e.g., MIS lines, EOM with silica buffer) justifies the an-

alytical effort to overcome this difficulty.

In addition to the computation of the propagation con-

stants, a general procedure to compute the modal imped-

ances is provided. As it is well known, the existence of

longitudinal field components supported by non-TEM

structures does not allow unique current Z and voltage V

definitions in terms of path integrals of the fields. The

impedance definition for this kind of transmission lines is

affected by the aforementioned ambiguity, and the usual

TEM definitions are no longer equivalent, showing dif-

ferent dispersive behavior [18]. The adequacy of the def-

inition of the characteristic impedance for microstrip-like

or other non-TEM structures has been the subject of dis-

cussion by several authors [ 19]–[2 1]. In any case, the

power flowing through the cross section of the structure

is essential to define impedance parameters in single or

multiconductor cases, as he has been discussed by differ-

ent authors [13], [16], [22]–[24]. To our knowledge, the

power flux has not been computed as directly as the prop-

agation, constant (D) in a multilayered system. Just a few

examples of explicit treatment of the power flux are found

in the literature. As an example, Chen et al. [13] use the

method of lines to analyze microstrip lines providing

expressions to compute transmitted and loss powers. A

new general method to obtain the power flowing through

the cross-section of an arbitrary layered structure is shown
here. The power flux is explicitly expressed in terms of

the surface current distribution on the strips for each prop-

agating mode. The computation of the modal power in a

multiconductor line in conjunction with the current eigen-

vectors make it possible to obtain the modal impedances

by using the definition reported in [23] and [24]. This def-

inition is compatible with fundamental reciprocity re-

quirements, and differs at high frequencies from other

commonly used alternatives (see, for instance, [22]).

Finally, the validity of the numerical results has been

checked with previous theoretical and experimental data.

From these results it can be concluded that the SDA is a

numerically efficient and accurate technique to deal with

these sorts of transmission lines if some precautions are

taken. In particular, the feasibility of this method to deal

with high conductivity substrates is proven. An exhaus-

tive study about the number of trial functions to be re-

tained has been achieved. Although propagation constants

are not too sensitive to the number of trial functions in

most cases, a good knowledge of the current distribution

on the strips is crucial to attain accurate values of modal

impedances.

II. STATEMENT OF THE PROBLEM: COMPUTATION OF

THE COMPLEX PROPAGATION CONSTANTS

The cross section of the multiconductor transmission

system considered in this paper is shown in Fig. 1. A wide

variety of MMIC (and MIC) transmission lines are partic-

ular cases of this general configuration. Since the struc-

ture is homogeneous in the z-direction, the phasor asso-

ciated to the electromagnetic field has the following form:

A = A(-x, y) e ‘~yz, The propagation constant is a complex

number, -y(o) = 13(cJ) – jcY(co), /3 being the phase con-

stant, Q the attenuation factor, and u the angular fre-

quency.

A. Spectral Domain Formulation

The analytical procedure to determine T(U) is the same

that the one reported in [4]. There, lossless structures were

treated. The extension to the loss y case is carried out here

by introducing in the formulation in [4], the complex per-

mittivity tensor (1), and the complex propagation con-

stant, -y. The method is a SDA where the spectral dyadic

Green’s function, ~ (n, u), is determined via the t~ans-

verse propagation matrix technique (TPM) [4]. The only

difference is the complex nature of all quantities. Permit-

tivities appearing in those expressions become complex

quantities, taking into account the lossy nature of media,

as it is shown in (1). Fields and currents are then con-

nected in the spectral domain as follows:

~~(n) = j~pOG(n, a) “ J~(n) (2)

where subindex M refers to the Mth interface where con-

ducting strips are printed. .

Once G (n, a) is obtained, Galerkin’s method is used to

solve the integral equation in the spectral domain. This

method leads to a homogeneous system of linear equa-

tions with a certain coefficient matrix [A(o-r, ~)]. The en-

tries of [A(a, y)] are numerical series whose general term

is

Aj~ = ~ ~.,(n)~~,,(n) G.B(n);
n

(where a, (3 = x, z) (3)

where Y., ~(n) is the Fourier transform of the correspond-

ing basis function used to expand the unknown surface
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current density. The set of trial functions used in this work

is the same that the one used in [4]. These functions in-

clude the strip edge condition and make use of the quasi-

minimax property of Chebyshev polynomials. The Fou-

rier transforms of these basis functions are known in

closed form in terms of the Bessel functions of first kind,

which are suitable for numerical treatment.

The condition of nontrivial solution for the equations

system, det [A(cJ, ~)] = O is, implicitly, the dispersion

equation y = T(a) of the structure. Its solution provides

the mode propagation constants of the structure Since (3)

is a very slowly convergent serie, the solution of the ei-

genvalue equation is a very slow process. In order to ac-

celerate this part of the analysis some points should be

taken into account, as it will be shown in the next sub-

section.

B. Numerical Solution of the Eigenvalue Equation

The numerical treatment of the problem is substantially

different from that used in [4]. In the general case, solving

the eigenvalue equation implies to find the zeroes of a

complex function of complex variable. This is achieved

by using an effective numerical method which requires to

calculate repeatedly the [A(u, ~)] matrix. These compu-

tations should be efficiently achieved to get low CPU

times and high accuracy. In this way, it has been found

necessary to use a technique to accelerate the convergence

of the series involved in (3). The technique is essentially

based on the addition and subtraction of approximate se-

ries that asymptotically match the series to be added. The

main advantage lies in the fact that the approximate series

need to be computed only once. Thus, the elements of the

Galerkin’s matrix are computed as follows:

where Kj~ is the summation of the approximate series.

(5)

and G~p is an approximation of the corresponding Green’s

function element. This approximation is better for in-

creasing values of n (in fact, ~ (n >> N) ~ ~ ‘(n)). The

complete expression for the elements of G m is

[[

1 Tzq(n) k~{(n)
G~(n)=~ 1–~,~+—

kOe(n) e(n) 11
[[ 72W)

G;(n)=+ l–&—
kOc(n) . e(n)

(
+k; ~

2~(n)—
O(n)–)11

[(

2 1
G~(n)=~ ~–—

)[

1_ 74q(@

n k&(n) @(n) – 2a ~ k~e ‘(n)

(
—+J-

1 4*(n)

+ 72 @(n) e 2(n) c(n) @(n) )

11+kiWn)$*(n) (6)

where an = rm /a is the Fourier variable; k? = o 2po eo.

The functions t(n), q(n), O(n), ~(n), J(n), and @(n) are

computed via readily programmable recurrence expres-

sions (parallel to the ones used in the computation of the

Green’s dyad) in terms of n and the perrnittivity tensors

of the substrates (see Appendix I). The unknown propa-

gation constant., T, appears as a multiplier factor in these

expressions. Thus, when T changes in the zero searching

process, the approximate series do not have to be com-

puted again. The formula (6) is a cumbersome expression

because it is absolutely general and takes into account the

presence of an arbitrary number of thin or thick layers. It

could be significantly simplified for particular structures

with two or three layers or without thin layers. Neverthe-

less, we have used the complete expression to write a

computer code which is useful for the general configura-

tion studied in (his paper.

The approximate dyad ~ ‘(n) has been obtained from

the truncation of the power series expansion of the eigen-

values TC,(n), Tz,(n), associated to the [Ki(n)] matrices,

and other transversal propagation constants ~y,(n) defined

in [4]. Terms leading to series in (5) decaying as 1/n5 or

more quickly have been neglected. In addition, we have

eliminated the terms depending on the unknown propa-

gation constant, T, in the arguments of the hyperbolic

functions involved in the computation of ~(n, a). We

must recognize here that a somewhat similar scheme has

been used in ~?5]. However, the study in that paper is

limited to a two-layer lossless problem and neglects terms

from 1/n3. The consequences of this will be discussed in

the results section.

It should be noted that the approximate Green’s func-

tion converges ito its true value independently of the ratio

between the layer thickness and the box width. Conse-

quently, the first term in (4) becomes a very quickly con-

vergent series which can be added with extremely high

accuracy by ret~aining at most a few tens of Fourier terms

(for non critical cases less than ten terms are enough). The

accuracy is significantly improved here in comparison

with other techniques since the residual error of tails cor-

responds to a Fourier series decaying as 1/rz5. In partic-

ular, convergence problems in SDA computations owing

to the existence of very thin layers are avoided. An arbi-

trary nuniber of thin substrates or superstrates can be ac-

commodated. The summation in (5), requires to add up

much more terms, although asymptotic techniques have

been used to accelerate this summation. But, since the

dependence on ~ and n of G~D is separated, these series

are computed only once for each geometry and each fre-

quency value.

III. Pow ER FLOW AND MODAL IMPEDANCES

A. Computation of the Complex Power Flux

The existence of NC conducting strips printed at the Mth

interface, implies that N, quasi-TEM type fundamental

modes can be supported by the structure. Once the modal

complex propagation constants -f 1, “ “ . , ~~, are com-

puted, a complex modal power associated to each propa-
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gating mode is defined as the flux of the Poynting’s vector

through the cross-section of the structure:

pk=; H(E X H*), “ LLS. (7)

s

It should be noted that real and imaginary parts are re-

tained in this definition, in accordance with the theory de-

scribed in [26] and [24].

From Parseval’s theorem, the power flowing through

the ith layer is expressed in terms of the transformed elec-

tric and magnetic fields in this layer:

d,

p;=! ;

!,
z ~=_m ~_, [~i(n, y) X ~~(n, Y)]k “ ZS dy. (8)

Now introducing the expressions in [4] for the electro-

magnetic fields and the matrix formulation provided by

the SDA-TPM scheme, the integration of the Poynting

vector over the y-variable is analytically carried out by

using well known matrix algebra theorems. This mathe-

matical procedures leads to an expression for P! in func-

tion of the transformed tangential electrical fields at the

surfaces limiting the ith layer, E, (n) and .E, _ I(n):

P: = & ~=:m [E: E:.,]

[1
E?

“ [M, (?2, 6J, ~J] “
E:- , “

(9)

Superscripts T and * standing for transpose and complex

conjugate. [lfl (n, OJ, y~)] is a 4 x 4 matrix, which is

formed by two 2 x 2 matrices arranged in the following

way:

[ftfz (~, (d, ‘)’k)]=
[

[Jf:1 -[M?] 1 (lo)
-[M!] [M:]

Formally, the [A4fl ] and [M:] matrices are hyperbolic co-

tangent and cosecant functions, as is shown in the Appen-

dix II.

The tangential field at i.th interface is related to the elec-

tric field at the conductor interface via a transfer matrix,

[T(rz)]j, which is readily computed from the [LB’ ‘(n)]~ and

[g(n)]~,~ ~ 1 matrices defined in [4] (see Appendix III).
Thus, the power flowing through an arbitrary layer is ex-

pressed as a function of the tangential electric field at the
Mth interface. Introducing (2), we define for each layer a

2 X 2 matrix, [fV1(n)]:

[Nj(~, W, ~~)] = GT “ [[T]; [T]~_,]

[1[T]:
“ [M,] “ . ~*. (11)

[T]:_ ,

Thus, the modal power flowing through the ith layer is

given by

Finally, the total complex power associated to the kth

propagation mode flowing through the cross section of the

whole structure, can be expressed in terms of the Fourier

transform of the surface current distribution on the con-

ductors:

where [N] is obtained by adding the [iVj ] matrices corre-

sponding to each layer. Note that ~M is a known quantitY

once the eigenvalue problem has been solved and the

complex vector solution to the Galerkin’s problem has

been found. It should be emphasized that [iV(n, U, y)] is

generated by means of a recurrent algorithm working par-

allel to that used in the Green’s dyad computation. Simple

2 x 2 matrices operations are involved. Thus, the above

expressions turns out to be easily implemented as a com-

puter subroutine allowing the computation of the complex

modal power in very general cases of coplanar lines on

multilayered substrates.

B. Characteristic and Modal Impedances

Once the modal power flux is computed, the impedance

definition problem is posed. Brews [26] shows the feasi-

bility of imposing the usual current-voltage (1 – V) re-

lation for the complex power—even for a hybrid mode—

for a single microstrip line. If this requirement is fulfilled,

the three common definitions-in terms of power-current

(P – 1), voltage-power (V – P) and voltage-current

(V – 1) ratio–become equivalent. The uncertainty does

not stem from the choice of definition, but from the ability

to define one of the quantities, I or V. The accessibility

of either 1 or V determines the choice of one of them as

the prevailing one.

Different approaches have been used to define the modal

impedances of multiconductor lines. For example, defi-

nitions chosen in [16] and [22] assign partial powers to

the lines. The line-mode impedances are defined as ratios

between power and current associated to each line for each

mode. Kitazawa in [3] uses a voltage-current definition,

since he considers that the total power flux cannot be al-

located to the individual strips. However, this definition

is arbitrary in some extent [26]. Finally, Wiemer et al.

propose in [23] a new definition of modal impedances for

multiconductor transmission lines on lossless substrates.
A similar requirement to the one used by Brews [26] for

the single conductor case is done there. Modal complex

powers and voltage and current eigenvectors fulfill the

following relationship:

[P] = ; [v]~ “ [Z]* (14)

where [P] is a diagonal matrix built with the modal pow-

ers. Each column of [V] and [Z] are the voltage and cur-

rent eigenvectors associated to each propagation mode. In

our case (multistrip line), the primary quantities to be

computed are the modal powers and the current eigenvec-

tors ([P] and [Z] matrices). These are built by taking the
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complex coefficients corresponding to the first term of the

current expansion on each conductor, since just this term

contributes to the net current with our choice of basis

functions. The eigenvoltage matrix [V] is obtained by re-

quiring (14). Modal orthogonality is included in (14) in

the lossless case, since V; “ Z; = V; “ Z~ = O, 1 # m.

A proof of the suitability of these assumptions can be

found in [24], where for a two conductors structure a cou-

pled transmission line model leads to expressions for the

modal impedances analogous to the ones provided by the

definition given in [23].

Nevertheless, if Iossy substrates are present, the above

formulation can be used only for certain symmetrical dis-

tribution of conductors. In the most general case, the

product of the eigenvoltage and the conjugate complex

eigencurrent associated to different modes is not zero any

more, and the matrix [1’] in (14) is non-diagonal. Cross-

powers P1~ (defined from the electric field of mode 1 and

the magnetic field of mode m, 1 # m), should be then

computed in order to obtain the voltage eigenvectors; For-

tunately, the computation of P1$m, 1 # m, can be avoided

if the orthogonality condition for the eigenvectors is used.

So, for a generalized multiconductor microstrip structure,

once the eigencurrents and modal powers are obtained for

all the independent quasi-TEM type modes, the elements

of the voltage eigenvectors are computed by solving the

following set of linear equations:

Pk = ;V:” z;

1
k,l, m=l, ””. ,NC.

O=v; ”zm; l#m

(15)

In this way, only the diagonal elements of [P] have to be

computed. This leads to considerable CPU time savings.

Modal impedances are defined for each line, lth, and

each mode, k th, as the ratio between the elements of the

[V] and [Z] matrices, that is Zl~ = V~k/Z~k.

When modal propagation constants, normal mode

impedances and current eigenvectors are known, the mul-

tiport scattering and impedance matrices of the coupled

lines system are easily computed by using the expressions

in [22], [27]. The definition of modal impedances con-

tained in this paper preserves the symmetry properties of

the scattering and impedance matrices, which stands for

a lossy reciprocal system.

IV. RESULTS AND DISCUSSION

Before generating reliable numerical results, we have

tested the advantages provided by the method proposed in

this paper. Firstly, we must emphasize that straightfor-

ward addition of the series appearing in the analysis is
impractical because thousands of terms should be typi-

cally retained, especially if very thin layers are involved.

This fact yields prohibitive CPU times in the computation

of the complex modal propagation constants. Moreover,

the accuracy of the numerical results is strongly depen-

dent on geometrical and electrical parameters. On the

contrary, the numerical scheme proposed in (4) in con-

junction with (6) makes it feasible to handle configura-

tions having one or several very thin layers in a very ef-

ficient manner. Railton et al. proposed a method to

consider one thin layer in a lossless problem [25]. First

of all, we have ,generalized that method in order to take

into account an i]rbitrary number of thin layers and Iossy

materials. This first order approximation of the Green’s

dyade corresponds to keeping only the first term in (6).

However, in mamy practical cases, several hundreds of

Fourier terms must be still retained if only this simplified

approximation is used. If a second order approximation

is used (namely, the complete expressions in (6)) only a

few tens of Fourier terms need to be retained in the worst

cases, even if wide boxes and/or high frequency or a“val-

ues are involved The quality of the first and second order

approximations is compared in Fig. 2 for a particular

practical MIS ccmfiguration. In this structure a very thin

layer of Si02 lies on a relatively thick Si substrate.

The relative error for G;, AGZZ(n) = I(G,,(n) –

G;(n)) /G,,(n) 1, is plotted in Fig. 2(a) versus the spectral
variable (n) for two values of o. In Fig. 2(b) we have done

the same for three frequency values. The quality of the

approximation gets worse when a increases, but anyway,

the second order approximation is significantly superior

to the first order one. We can also observe another im-

portant fact: the superiority of the second order approxi-

mation becomes more evident when frequency (and/or box

width) increases. These factors negatively affect the con-

vergence of the first order approximation, while the sec-

ond order is almost unaffected. In fact, when high fre-

quencies or large box widths (a) are involved, the use of

the second order approximation is essential. The same

conclusions are valid for AGX: and AGXX.

The computer codes implemented on the basis of the

theory in this p{tper have been exhaustively checked by

comparing with data available in the literature. These data

were obtained by means of quasi-TEM (valid in the low

frequency range) or other full-wave methods (Wiener-

Hopf’s technique, spatial domain techniques and so on).

We can conclude from these comparisons that the reli-

ability and accuracy of our results is very satisfactory in

all cases. In order to illustrate the applications of the tech-

nique proposed in this paper, several structures are ana-

lyzed and discussed in the next paragraphs.

In Fig. 3, we show the normalized wavelength, A~XO

(= kO/6), –AO is the free space wavelength-, and atten-

uation factor, a,, for a MIS configuration consisting of a

boxed microstrilp on Si-SiOz substrate. Three different

values of Si conductivity are considered and some exper-

imental data reported in [6] are included. By comparing

with the results reported in [Fig. 3 in [12]] for the same
structure, we can conclude that the agreement of our re-

sults with experimental data is slightly moire satisfactory

than those provided by spatial-domain or finite-elements

methods. The slow-wave region is characterized by a large

( A/hO << 1) frequency-independent slow-wave factor

and by an attenuation constant which is proportional to
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Fig. 2. Relative error in approximations of G: for several conductivity

and frequent y values. The structure is the same that in Fig. 3. (a) Operating
frequency: 10 GHz, (b) Conductivity: o, = 0.005 (Qmm)-’.

u.>

L A%2J”’’”mm’-$’$
~“o. 2 :,,’ n

:,. ,6 A ,,,
+.,,aj;:

801 0.1 10
Freq l(GHz)

Fig. 3. Dispersion of the normalized wavelength and attenuation factor for

a shielded MIS structure for different values of u,. Dimensions: a = 10
mm., h, = 0.25 mm., h2 = 1 ~m., w = 160 pm. c,, , = 12, C,,z = 4, Uz
= o.

the square of frequency. When frequency increases, the

structure enters either in the Iossy dielectric region (if u

is low enough) or in the skin effect region (if o is large).

The characteristic impedance has also been computed by

using the three usual definitions (power-current, voltage-

power and voltage-current):

z~[ = 2P/lz[2; Zov = lV12/2P*; ZOC = V/I, (16)

being 1 the longitudinal current flowing on the strip and V

the voltage. Here, V is defined as the path integral of the

electric field from the center of the strip to the ground

plane through a perpendicular straight line. This quantity

is computed by using the algorithm proposed in [28] for

layered structures, and the power flux by means of the

method proposed in this paper. From a computational

point of view, it is important to emphasize that more trial

functions are necessary in voltage than in power compu-

tations, especially in the slow-wave region. This is rea-

sonable from physical intuition. As it was expected, the

results obtained show that all the three definitions (both,

real and imaginary parts) are indistinguishable at low fre-

quencies (see Fig. 4). However, the frequency behavior

differs at higher frequencies. This is because the funda-

mental relation among power, voltage and current (P =

~ V o I*) is not fulfilled by V when defined as the path

integral. In accordance with the discussions in Section

III-B V should be defined from 1 and P. In the following,

we will restrict ourselves to the power/current definition.

Experimental data are also plotted in Fig. 4: good agree-

ment is found for these particular geometrical and elec-

trical parameters.

Livernois et al. [12] point out strong qualitative and

quantitative discrepancies between their spatial domain

results and the SDA results reported in [14]. These dis-

crepancies arise when wide strips and high u are present.

They claim that SDA results are wrong because they are

too far from the ones computed from a parallel-plate

waveguide model. This reasoning is correct since the par-

allel-plate analysis should work very well for wide strips.

However, we have carefully computed the slow-wave fac-

tor for this structure and we have found that our results

are consistent with the parallel-plate waveguide model

(see Fig. 5). In fact, the agreement is better when Q in-

creases, as it is expected from a physical argument: the

smaller the skin depth is, the better the parallel-plate

model works. Hence, our results seem to be very reliable.

Wrong SDA data stem essentially from two numerical er-

ror sources. On the one hand, several basis functions of

the kind used in this paper must be retained when wide
strips or high a are involved to correctly approximate the

solution (the results reported in [14] were computed by

using only one function). On the other hand, care must be

taken in the evaluation of the series or integrals appearing

in the spectral analysis, especially when very thin layers

and/or high a materials are, involved (as it is the case). In

fact, we have also detected significant differences with

spectral results in [14] even if only one trial function is

used in our computations. This point has been highlighted

in this paper. When an adequate number of trial functions

and Fourier terms are used the results provided by the

method in this paper are closer to the ones computed from

the parallel plate model. We have also observed that the

spatial domain results reported in [12] for the highest value

of a (see Fig. 5) are slightly too high. Similar numerical

error sources could explain this disagreement with our re-

sults .

Finally we present some results for multistrip struc-
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Fig. 4. Frequency behavior of the (a) real and (b) imaginary parts of the

characteristic impedances for the MIS structure in Fig. 3.

o,15~l 1 1 I

0.1 -

#

>

0.05 -

This work

-;
. .. .. ...-

.,TZq<“ ~m)-l

o 1 I J
0.1 1

Freq (GHz)

(a)

1

0.01
u. 1

Freq (GHz) ‘

(b)

Fig. 5. Comparison of results for the complex propagation constant ob-

tained by means of three different methods. Single MIS structure. Dimen-
sions: a = 10 mm., !-zI = 0.25 mm., !-zZ= 1 pm., w = 0.6 mm. e,, , = 12,

e,, z = 4, uz = O. (a) Normalized wavelength. (b) Attenuation factor.

tures. Two shielded symmetric coupled microstrips on

three layer substrate—insulator-semiconductor-semi-in-

sulator—are first studied. This structure presents two very

thin layers located under the conductors. The results for

~/k. and CYcompares favorably with data in [16], where

a SDA is also used. Modal impedances agree satisfactor-

ily for the less dispersive mode—odd mode–but signifi-

cant discrepancies are observed at high u with even mode

data, as it can be seen in Fig. 6. In Fig. 7 we show results

for a three conductor structure in a three layers configu-

ration. In Fig. 7(a), slow-wave factors and attenuations

are plotted for the three fundamental propagating modes.

The plus, minus and zero signs (+, –, O), stand for the

sense of the current flow, 12, on the conductors. Mode #l

presents the lowest ~/k. and relatively high attenuation

in the low-frequency range, owing to the existence of an

important electric field in the semiconductor layer. At high

frequencies (dielectric modes propagate), it is the field

distribution corresponding to mode #3 which shows the
highest attenuation factor. Real and imaginary parts of the

modal impedance [Zti ] (ith conductor, jth mode), are de-

picted in 7(b) and (c). It should be noticed that, as in the

single microstrip case, the propagation as dielectric mode,

(@/ko - 5), for each fundamental mode is preceded for

120- 1 ,35

-=

~

20

n
1 106

Freql ~GHz)

Fig. 6. Real and imaginary parts of modal impedances for two shielded
symmetric coupled microstrip on three layer substrate. Dimensions: a = 2

mm., kl = 0.1 mm., /z2 = 0.6pm .,lz3 = 0.4 pm., w = 10 pm., s = 10
pm., er, l = C,,2 = C,,3 = 12.7 (AsGa); 01 = 10-s (Qmm)-l; ~2 =

10( Qmm)-’; 03 = O.

a maximum in the imaginary part of the corresponding

modal impedances. For design applications, mode current

ratios (Rq s Iv /Z1j), should be provided if a three-con-

ductors transmission line is considered [22]. Obviously,

these parameters are known once the current eigenvectors

have been computed.
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Fig. 7. Three layers and three conductors configurations. Modal parame-
ters: (a) Slow-wave and attenuation factors. (b) Real parts. (c) Imaginary

parts of modal impedances. Dimensions: a = 6 mm., h, = 0.2 mm., h2
= 10pm., h3 = 1 pm., w = 150 /m., w’ = 100~m., s = 100~m. ~rl =
6,2 = 6,3 = 12.7 (AsGa); o, = 10-5( f2mm)-’, Uz = 5 lo-3( ~-mm)-’,

V. CONCLUSION

In this paper we have presented a method based on the

spectral domain formulation to efficiently analyze single

and multiconductor microstrip transmission lines used in

MMIC and high-speed VLSI circuits. Certain numerical

convergence problems arising in the study of this kind of

transmission structures are treated with detail. Approxi-

mate expressions for the Green’s dyad are used to dras-

tically improve the convergence of the Fourier series in-

volved in the computations. Important CPU time savings

are achieved with this procedure. The accuracy and reli-

ability of the results are also meaningfully enhanced. In

addition, a general method to compute the power flux

through the cross section of the structure has been devel-

oped. The power flowing for each propagating mode is

expressed as a function of the surface current density on

the strips (which is known from the Galerkin’s analysis).

The expression for the power is valid for an arbitrary

number of anisotropic and/or semiconductor layers. Once

modal powers and current eigenvectors are computed,

voltage vectors are defined from the relation [P] = ~ [V] T

“ [Z]* and the modal orthogonality condition. Modal

impedances are obtained now in the usual way as the volt-

age/current ratio for each line and each mode.

APPENDIX I

The functions appearing in the definition of the approx-

imate spectral Green’s dyad (6), are computed as follows

(superscript + stands for M + 1 < i < ZV, and – for 1

< i. s M, that is, they refer to layers above and below

the Mth interface respectively):

a) @(n) =

!I?: (n) =

*;(n) =

b) e(n) =

Et (n) =

~j =

E;(n) =

coth (a.hi); ZJ (n) = coth (CY.hN). ~ (18)

CM+ lE~+ ,(rz) + ~ME~(rz) (19)

The general expressions for the functions appearing in
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the second order approximation are

c) g(n) = eyM+l~M+l E~+,(n) + EyMeM~; (n) – ~M+I(~) – %(n)

(CYM– CYM. ,)q - I E/ii- IOZ)CLcosch2 [w;(;kwl
EM(n) = (M # 1)

1/2h ] + e~_lEfi-l(n)12[~~ coth [% ~.y~ M

(~y’w+ , – qM+2) EM+ ~E~+2(n) EL+, cosch2 [a,, E&&+, hl~+,]
2M+ l(n) =

[CM+, coth [et.e~~~+, hM+,] + EM+ *E~+2(n)]2
(M+l #N).

d) q(n) =
%+,%4+(EJ+ l(n) + yzMJ%w _ *M+,(n) _ *M(n)

e&f+l EM

e) $(~) = x&f+,(~) + xJ,f(/’t) – ikJ,f+ l(n) – ~Jf(n)

1
*M+, =

[
T&+ ,(n)

coth (CK,hM+ 1) + @I~+ z(n)

F;(n) = coth (ah,); F; (n) = coth (a,lhN).

f) ~(n) = EZ~+,*~+l(n) + ~Z~*fi(n) – eM+l(n) – ‘M@)

(lM(n) =
(GM -’ C’M_,) @fi - ,(n) cosch2 (a. hM)

[coth (a.hM) + @~_ [(n)]’
(M # 1)

(%., – ~z,+t+, ) @~+ z(n) cosch2 (a. hM+,)
6Jf+,(n) =

[coth (a.hM+ J + @L+2(n)]2
(M+l#lv)

Some of the expressions above are valid for M # 1 and

225

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

M + 1 # IV. If ~ = 1 or M + 1 = iV those expressions volve the same recurrence relations used in the computa-

are zero. tion of ~ (n, U). Thus, redundant computations can be

It must be emphasized that the above expressions in- avoided.
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APPENDIX II

In this appendix we define the [A2f’B ] matrices appear-

ing in power computations. Let [Ki (n)] the transverse

propagation matrix associated to the ith layer such as de-

fined in [4], and [Qi (n)] its diagonalization matrix:

[1o
[K,] = [Q,] “ 7“’ “ [Q,l-’ (29)

o ‘yT,

being Tc, (n), Tz, (n) the eigenvalues of [Ki (n)]. Then, the
[M! ], [ill?] matrices in (10) are computed in the follow-

ing way:

[Mf(n)l = ([Qi] “)’ “ [Aj(n)] “ ([Qj]-’)* (30)

[M!(n)] = ([Qi] -’)’ “ [B,(n)] “ ([QL]-’)* (31)

The elements of [A{] and [13,] matrices are

(k, 1 = 1, 2) (33)

where hi is the thickness of the ith layer; y;, = CY~ + -y2
— k? e),, and T 1, -yZ stand for the eigenvalues ~,, ~., re-

spectively. (Ckl )i and (Dkl )i are elements of the following

matrices:

(34)[1[Ci] =[Q[]’ -~‘~n “ [Q,]*

[1

Q!n o
[Dl] = [Q,]’ o “ [yi]* “ [Q,]*

70
(35)

being [Yi ] the admittance matrix defined in [4], which re-

lates the tangential components of the electric and mag-

netic fields in the spectral domain.

APPENDIX III

The spectral components of the tangential electric field

at the jth interface can be expressed in terms of the elec-

tric field at the strips interface (Mth) in the following way:

Ej = [T(~)]j “ EM (36)

where [T(n)]j matrix is given by

f

M

(– l) M-J k=!+ , [LB(n)]~! , “ [g(n)]~_ ,,k

) ifj < M

[~(~)1, (~) = J

(–l)J-M k=:+, [L”(n)]~!k “ [g(n)]k,~-,

( ifj > M (37)

The [LB ]k - ~ and [LU]N _ k matrices are defined in [4].
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