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Efficient Spectral Domain Analysis of Generalized
Multistrip Lines in Stratified Media Including
Thin, Anisotropic, and Lossy Substrates
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Abstract—This paper deals with the full-wave analysis of
multiconductor microstrip lines used in electrooptic modula-
tors (EOM), MMIC or high speed VLSI applications. An ar-
bitrary number of coupled coplanar strips are embedded in a
stratified medium involving iso/anisotropic dielectric and/or
semiconductor layers. The numerical aspects of the computa-
tion of the propagation constants using the spectral domain
analysis (SDA) are stressed. An efficient scheme is used to ac-
curately compute attenuation and propagation constants and
current distributions with reasonable CPU times. Convergence
problems due to the existence of very thin layers adjacent to
the metallized interface has been explicitly considered. An al-
gorithm to compute the modal characteristic impedances is
provided regardless of the number and nature of substrate lay-
ers. A reciprocity related definition of modal impedances is used
in this paper. The use of this definition ensures the symmetry
of the multiport scattering matrix associated to the structure.

1. INTRODUCTION

ICROSTRIP-like transmission lines are the most

widely used in MIC and MMIC circuits. They also
find applications in electrooptic modulators, SAW trans-
ducers and high-speed VLSI interconnects. Conse-
quently, a large amount of technical literature has been
devoted to the analysis of these transmission lines. First
of all, lossless isotropic dielectric substrates were as-
sumed by most of authors. This is a good assumption for
conventional MIC substrates. However, technological ad-
vances make it necessary to study the propagation of the
electromagnetic field in those transmission lines when
printed on a variety of anisotropic dielectric or semicon-
ductor substrates. Dielectric anisotropy often has to be
considered (e.g., silicon-on-sapphire technology, elec-
trooptic modulators and certain MIC substrates). A de-
tailed review of the role of anisotropy in integrated circuit
structures was reported in [1], and more recent works on
this subject can be found in [2]-[5] and references therein.
In addition, semiconductor materials with a wide range of
doping levels are used in monolithic technology: slow-
wave transmission lines (Schottky contact or MIS—metal-
insulator-semiconductor—structures) are good examples
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of its utilization. In general, MMIC and VLSI technolo-
gies imply the use of semiconducting materials submitted
to selective doping process. The geometry of these con-
figurations consists of conducting strips printed on lossy
stratified substrates. Different methods have been devel-
oped to analyze single and coupled planar structures in-
cluding lossy media. Perturbational methods are pre-
cluded because the small losses condition is not fulfilled
by semiconductor materials. The simple and analytical
parallel-plate waveguide model was initially used for the
study of slow-wave structures [6}-[8]. A quasi-TEM ap-
proach based on physical considerations has been used in
[51, 9], [10]. However, for arbitrary geometries, if high
conductivity materials or high frequencies are involved,
more accurate theoretical models become necessary.
Thus, full-wave approaches were developed later, e.g.
mode matching [11], space-domain analysis [12], method
of lines [13] and spectral-domain analysis (SDA) [10],
[11], [14], [15], [16], [17]. The SDA is probably the most
simple and accurate procedure to deal with planar lines.
However, from a numerical standpoint, the application of
the SDA to the analysis of microstrip lines used in MMIC,
high-speed VLSI applications and EOM shows certain
important troubles. Part of this paper concerns this sub-
ject. ‘

The general multistrip structure studied in this paper is
shown in Fig. 1. In the most general case, the substrates
are characterized by the following diagonal complex per-
mittivity tensor [e.,]:

[Eeq] = EO(EX'fﬁ + nyy + 6222)’ (1)
with
- . Oan
€a = €an, —J
WE(

where « stands for x, y, z, which allows the consideration
of anisotropic permittivity (dielectrics) and/or conductiv-
ity (semiconductors, semiinsulators). Perfect zero thick-
ness conductors are also assumed. As it was stated above,
our goal is to implement an efficient SDA for this prob-
lem. When Galerkin’s method is used, the most time con-
suming part of the analysis is the generation of the Gal-
erkin matrix. This matrix must be computed several times
before an eigenvalue is attained. This process can be
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Fig. 1. Transverse section of a multilayered, multiconductor coplanar
transmission line with anisotropic dielectrics and semiconductors ([e.,])-

drastically accelerated if an appropriate approximation of
the dyadic Green’s function is used. Thus, as it will be
shown later, the CPU time is kept within reasonable mar-
gins and the accuracy of the results is ensured. This
method is particularly advantageous when extremely thin
layers are adjacent to the metallized interface, since this
configuration causes poor convergence when usual tech-
niques are used. The practical significance of this case
(e.g., MIS lines, EOM with silica buffer) justifies the an-
alytical effort to overcome this difficulty.

In addition to the computation of the propagation con-
stants, a general procedure to compute the modal imped-
ances is provided. As it is well known, the existence of
longitudinal field components supported by non-TEM
structures does not allow unique current / and voltage V
definitions in terms of path integrals of the fields. The
impedance definition for this kind of transmission lines is
affected by the aforementioned ambiguity, and the usual
TEM definitions are no longer equivalent, showing dif-
ferent dispersive behavior [18]. The adequacy of the def-
inition of the characteristic impedance for microstrip-like
or other non-TEM structures has been the subject of dis-
cussion by several authors [19]-[21]. In any case, the
power flowing through the cross section of the structure
is essential to define impedance parameters in single or
multiconductor cases, as he has been discussed by differ-
ent authors [13], [16], [22]-[24]. To our knowledge, the
power flux has not been computed as directly as the prop-
agation constant () in a multilayered system. Just a few
examples of explicit treatment of the power flux are found
in the literature. As an example, Chen et al. [13] use the
method of lines to analyze microstrip lines providing
expressions to compute transmitted and loss powers. A
new general method to obtain the power flowing through
the cross-section of an arbitrary layered structure is shown
here. The power flux is explicitly expressed in terms of
the surface current distribution on the strips for each prop-
agating mode. The computation of the modal power in a
multiconductor line in conjunction with the current eigen-
vectors make it possible to obtain the modal impedances
by using the definition reported in [23] and {24]. This def-
inition is compatible with fundamental reciprocity re-

quirements, and differs at high frequencies from other
commonly used alternatives (see, for instance, [22]).

Finally, the validity of the numerical results has been
checked with previous theoretical and experimental data.
From these results it can be concluded that the SDA is a
numerically efficient and accurate technique to deal with
these sorts of transmission lines if some precautions are
taken. In particular, the feasibility of this method to deal
with high conductivity substrates is proven. An exhaus-
tive study about the number of trial functions to be re-
tained has been achieved. Although propagation constants
are not too sensitive to the number of trial functions in
most cases, a good knowledge of the current distribution
on the strips is crucial to attain accurate values of modal
impedances.

II. STATEMENT OF THE PROBLEM: COMPUTATION OF
THE COMPLEX PROPAGATION CONSTANTS

The cross section of the multiconductor transmission
system considered in this paper is shown in Fig. 1. A wide
variety of MMIC (and MIC) transmission lines are partic-
ular cases of this general configuration. Since the struc-
ture is homogencous in the z-direction, the phasor asso-
ciated to the electromagnetic field has the following form:
A = A(x, y)e /. The propagation constant is a complex
number, y(w) = B(w) — ja(w), B being the phase con-
stant, o the attenuation factor, and o the angular fre-
quency.

A. Spectral Domain Formulation

The analytical procedure to determine y(w) is the same
that the one reported in [4]. There, lossless structures were
treated. The extension to the lossy case is carried out here
by introducing in the formulation in [4], the complex per-
mittivity tensor (1), and the complex propagation con-
stant, y. The method is a SDA where the spectral dyadic
Green’s function, G(n, w), is determined via the frans-
verse propagation matrix technique (TPM) [4]. The only
difference is the complex nature of all quantities. Permit-.
tivities appearing in those expressions become complex
quantities, taking into account the lossy nature of media,
as it is shown in (1). Fields and currents are then con-
nected in the spectral domain as follows:

E\(n) = jopoGn, @) * Jy(n) @)

where subindex M refers to the Mth interface where con-
ducting strips are printed.

Once G (1, w) is obtained, Galerkin’s method is used to
solve the integral equation in the spectral domain. This
method leads to a homogeneous system of linear equa-
tions with a certain coeflicient matrix [A(w, v)]. The en-
tries of [A(w, )] are numerical series whose general term
is

Ay = 2T ) TE,(0) Gogn);

(Where o, B =1x,2) (3)

where J, ;(n) is the Fourier transform of the correspond-
ing basis function used to expand the unknown surface
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current density. The set of trial functions used in this work
is the same that the one used in [4]. These functions in-
clude the strip edge condition and make use of the quasi-
minimax property of Chebyshev polynomials. The Fou-
rier transforms of these basis functions are known in
closed form in terms of the Bessel functions of first kind,
which are suitable for numerical treatment.

The condition of nontrivial solution for the equations
system, det [A(w, ¥)] = O is, implicitly, the dispersion
equation v = vy(w) of the structure. Its solution provides
the mode propagation constants of the structure. Since (3)
is a very slowly convergent serie, the solution of the ei-
genvalue equation is a very slow process. In order to ac-
celerate this part of the analysis some points should be
taken into account, as it will be shown in the next sub-
section.

B. Numerical Solution of the Eigenvalue Equation

The numerical treatment of the problem is substantially
different from that used in [4]. In the general case, solving
the eigenvalue equation implies to find the zeroes of a
complex function of complex variable. This is achieved
by using an effective numerical method which requires to
calculate repeatedly the [A(w, )] matrix. These compu-
tations should be efficiently achieved to get low CPU
times and high accuracy. In this way, it has been found
necessary to use a technique to accelerate the convergence
of the series involved in (3). The technique is essentially
based on the addition and subtraction of approximate se-
ries that asymptotically match the series to be added. The
main advantage lies in the fact that the approximate series
need to be computed only once. Thus, the elements of the
Galerkin’s matrix are computed as follows:

Ay = § T T ) {Gpn) — GH(m} + Ki (4

where K, is the summation of the approximate series.
Ky = 2 Jo(m) T, Gty )

and G .3 is an approximation of the corresponding Green’s
function element. This approximation is better for in-
creasing values of 7 (in fact, G(n >> N) ~ G®(n)). The
complete expression for the elements of G* is

w, \ _ O 1 [¥m k%%(n)B
Guln) = k%e n) {1 204% [ * €(n)

- e(n)
oy = _ 1 [7m
@) = {1 M[ e
(15-2)]

"Netr) ()

coon < L < 4 ___1_>_ 1 {7471(”)
=) = a, {\kie(n) ®(n) 202 | ke (n)

2f 1 § 4m
R <<I>(n) T 2w e <I>(n)>

k%a(n)} ,
+ »7(n) } 6)

where o, = nw/a is the Fourier variable; k3 = w’ugye,.
The functions e(n), y(n), dn), £(n), Y(n), and ®(n) are
computed via readily programmable recurrence expres-
sions (parallel to the ones used in the computation of the
Green’s dyad) in terms of n and the permittivity tensors
of the substrates (see Appendix I). The unknown propa-
gation constant, v, appears as a multiplier factor in these
expressions. Thus, when  changes in the zero searching
process, the approximate series do not have to be com-
puted again. The formula (6) is a cumbersome expression
because it is absolutely general and takes into account the
presence of an arbitrary number of thin or thick layers. It
could be significantly simplified for particular structures
with two or three layers or without thin layers. Neverthe-
less, we have used the complete expression to write a
computer code which is useful for the general configura-
tion studied in this paper.

The approximate dyad G ®(n) has been obtained from
the truncation of the power series expansion of the eigen-
values v.(n), v, (n), associated to the [Ki(n)] matrices,
and other transversal propagation constants v,,(n) defined
in [4]. Terms leading to series in (5) decaying as 1/ n’ or
more quickly have been neglected. In addition, we have
eliminated the terms depending on the unknown propa-
gation constant, vy, in the arguments of the hyperbolic
functions involved in the computation of G(n, w). We
must recognize here that a somewhat similar scheme has
been used in [25]. However, the study in that paper is
limited to a two-layer lossless problem and neglects terms
from 1 /n®. The consequences of this will be discussed in
the results section.

It should be noted that the approximate Green’s func-
tion converges to its true value independently of the ratio
between the layer thickness and the box width. Conse-
quently, the first term in (4) becomes a very quickly con-
vergent series which can be added with extremely high
accuracy by retaining at most a few tens of Fourier terms
(for non critical cases less than ten terms are enough). The
accuracy is significantly improved here in comparison
with other techniques since the residual error of tails cor-
responds to a Fourier series decaying as 1/ n’. In partic-
ular, convergence problems in SDA computations owing
to the existence of very thin layers are avoided. An arbi-
trary number of thin substrates or superstrates can be ac-
commodated. The summation in (5), requires to add up
much more terms, although asymptotic techniques have
been used to accelerate this summation. But, since the
dependence on vy and n of Gy is separated, these series
are computed only once for each geometry and each fre-
quency value.

III. Power FLow AND MobAL IMPEDANCES
A. Computation of the Complex Power Flux

The existence of N. conducting strips printed at the Mth
interface, implies that N, quasi-TEM type fundamental
modes can be supported by the structure. Once the modal
complex propagation constants vy, * - , Yy, are com-
puted, a complex modal power associated to each propa-
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gating mode is defined as the flux of the Poynting’s vector
through the cross-section of the structure:

Pk=1 H (E x H*), - dS. @)

N

It should be noted that real and imaginary parts are re-
tained in this definition, in accordance with the theory de-
scribed in [26] and [24].

From Parseval’s theorem, the power flowing through
the ith layer is expressed in terms of the transformed elec-
tric and magnetic fields in this layer:

@

Pi=2 3

T 24w

d,
Sd [En,y) X Hf (n, Yk * s dy. (8)

Now introducing the expressions in [4] for the electro-
magnetic fields and the matrix formulation provided by
the SDA-TPM scheme, the integration of the Poynting
vector over the y-variable is analytically carried out by
using well known matrix algebra theorems. This mathe-
matical procedures leads to an expression for P¥ in func-
tion of the transformed tangential electrical fields at the
surfaces limiting the ith layer, E,(n) and E, _ (n):

oo

Pi-st X B
0n=-oo
E}
’ [Mz(n’ w, ’Yk)] : {,-* } (9)
11

Superscripts 7 and * standing for transpose and complex
conjugate. [M,(n, w, v;)] is a 4 X 4 matrix, which is
formed by two 2 X 2 matrices arranged in the following

way:
—[M?]} "
w0

[M]

M, (n, w, )] =
[M,(n, @, 7] [_[M?]
Formally, the [M?] and [M?] matrices are hyperbolic co-
tangent and cosecant functions, as is shown in the Appen-
dix 1I.

The tangential field at ith interface is related to the elec-
tric field at the conductor interface via a transfer matrix,
[T(n)];, which is readily computed from the (L% Yn)],, and
[g(7)]m. i+ matrices defined in [4] (see Appendix IIT).
Thus, the power flowing through an arbitrary layer is ex-
pressed as a function of the tangential electric field at the
Mth interface. Introducing (2), we define for each layer a
2 X 2 matrix, [N,(n)]:

Ni(n, @, vl = G+ [ITY (7171
(717

- [M,] [ .

(715,

Thus, the modal power flowing through the ith layer is
given by

} - G*. (11

aw,
P{-( _ Ho
2

B T W e 0l T (12)

Finally, the total complex power associated to the kth
propagation mode flowing through the cross section of the
whole structure, can be expressed in terms of the Fourier
transform of the surface current distribution on the con-
ductors:

_ awbg
2

where [N] is obtained by adding the [N;] matrices corre-
sponding to each layer. Note that J;, is a known quantity
once the eigenvalue problem has been solved and the
complex vector solution to the Galerkin’s problem has
been found. It should be emphasized that [N(n, w, v)] is
generated by means of a recurrent algorithm working par-
allel to that used in the Green’s dyad computation. Simple
2 X 2 matrices operations are involved. Thus, the above
expressions turns out to be easily implemented as a com-
puter subroutine allowing the computation of the complex
modal power in very general cases of coplanar lines on
multilayered substrates.

Pt 3 Th INey o, v0] - T (3)

B. Characteristic and Modal Impedances

Once the modal power flux is computed, the impedance
definition problem is posed. Brews [26] shows the feasi-
bility of imposing the usual current-voltage (I — V) re-
lation for the complex power—even for a hybrid mode—
for a single microstrip line. If this requirement is fulfilled,
the three common definitions—in terms of power-current
(P — I), voltage-power (V' — P) and voltage-current
(V — I) ratio—become equivalent. The uncertainty does
not stem from the choice of definition, but from the ability
to define one of the quantities, I or V. The accessibility
of either / or V determines the choice of one of them as
the prevailing one.

Different approaches have been used to define the modal
impedances of multiconductor lines. For example, defi-
nitions chosen in [16] and [22] assign partial powers to
the lines. The line-mode impedances are defined as ratios
between power and current associated to each line for each
mode. Kitazawa in [3] uses a voltage-current definition,
since he considers that the total power flux cannot be al-
located to the individual strips. However, this definition
is arbitrary in some extent [26]. Finally, Wiemer ez al.
propose in [23] a new definition of modal impedances for
multiconductor transmission lines on lossless substrates.
A similar requirement to the one used by Brews [26] for
the single conductor case is done there. Modal complex
powers and voltage and current eigenvectors fulfill the
following relationship: )

[P1=5[VI" - I]* (14)

where [P] is a diagonal matrix built with the modal pow-
ers. Each column of [V] and [I] are the voltage and cur-
rent eigenvectors associated to each propagation mode. In
our case (multistrip line), the primary quantities to be
computed are the modal powers and the current eigenvec-
tors ([P] and [1] matrices). These are built by taking the
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complex coefficients corresponding to the first term of the
current expansion on each conductor, since just this term
contributes to the net current with our choice of basis
functions. The eigenvoltage matrix [ V] is obtained by re-
quiring (14). Modal orthogonality is included in (14) in
the lossless case, since VI - I¥ = VI - I, =0,1 # m.
A proof of the suitability of these assumptions can be
found in [24], where for a two conductors structure a cou-
pled transmission line model leads to expressions for the
modal impedances analogous to the ones provided by the
definition given in [23].

Nevertheless, if lossy substrates are present, the above
formulation can be used only for certain symmetrical dis-
tribution of conductors. In the most general case, the
product of the eigenvoltage and the conjugate complex
eigencurrent associated to different modes is not zero any
more, and the matrix [P] in (14) is non-diagonal. Cross-
powers P (defined from the electric field of mode / and
the magnetic field of mode m, I # m), should be then
computed in order to obtain the voltage eigenvectors. For-
tunately, the computation of P"™, [ # m, can be avoided
if the orthogonality condition for the eigenvectors is used.
So, for a generalized multiconductor microstrip structure,
once the eigencurrents and modal powers are obtained for
all the independent quasi-TEM type modes, the elements
of the voltage eigenvectors are computed by solving the
following set of linear equations:

Pk___lvT.I*
27k 1 kK Lm=1,---
# m

, N..
0=V]-1I;

(15)

In this way, only the diagonal elements of [P] have to be
computed. This leads to considerable CPU time savings.

Modal impedances are defined for each line, /th, and
each mode, kth, as the ratio between the elements of the
[V] and [I] matrices, that is Z; = V. /I;.

When modal propagation constants, normal mode
impedances and current eigenvectors are known, the mul-
tiport scattering and impedance matrices of the coupled
lines system are easily computed by using the expressions
in [22], [27]. The definition of modal impedances con-
tained in this paper preserves the symmetry properties of
the scattering and impedance matrices, which stands for
a lossy reciprocal system.

IV. RESULTS AND DISCUSSION

Before generating reliable numerical results, we have
tested the advantages provided by the method proposed in
this paper. Firstly, we must emphasize that straightfor-
ward addition of the series appearing in the analysis is
impractical because thousands of terms should be typi-
cally retained, especially if very thin layers are involved.
This fact yields prohibitive CPU times in the computation
of the complex modal propagation constants. Moreover,
the accuracy of the numerical results is strongly depen-
dent on geometrical and electrical parameters. On the

contrary, the numerical scheme proposed in (4) in con-
junction with (6) makes it feasible to handle configura-
tions having one or several very thin layers in a very ef-
ficient manner. Railton et al. proposed a method to
consider one thin layer in a lossless problem [25]. First
of all, we have generalized that method in order to take
into account an arbitrary number of thin layers and lossy
materials. This jirst order approximation of the Green’s
dyade corresponds to keeping only the first term in (6).
However, in many practical cases, several hundreds of
Fourier terms must be still retained if only this simplified
approximation is used. If a second order approximation
is used (namely, the complete expressions in (6)) only a
few tens of Fourier terms need to be retained in the worst
cases, even if wide boxes and/or high frequency or ¢ val-
ues are involved. The quality of the first and second order
approximations is compared in Fig. 2 for a particular
practical MIS configuration. In this structure a very thin
layer of SiO, lies on a relatively thick Si substrate.
The relative error for Gg, AG.(n) = [(Gy(n) —
G (n)) /G, (n)|, is plotted in Fig. 2(a) versus the spectral
variable () for two values of ¢. In Fig. 2(b) we have done
the same for three frequency values. The quality of the
approximation gets worse when ¢ increases, but anyway,
the second order approximation is significantly superior
to the first order one. We can also observe another im-
portant fact: the superiority of the second order approxi-
mation becomes more evident when frequency (and/or box
width) increases. These factors negatively affect the con-
vergence of the first order approximation, while the sec-
ond order is almost unaffected. In fact, when high fre-
quencies or large box widths (a) are involved, the use of
the second order approximation is essential. The same
conclusions are valid for AG,, and AG,,.

The computer codes implemented on -the basis of the
theory in this paper have been exhaustively checked by
comparing with data available in the literature. These data
were obtained by means of quasi-TEM (valid in the low
frequency range) or other full-wave methods (Wiener-
Hopf’s technique, spatial domain techniques and so on).
We can conclude from these comparisons that the reli-
ability and accuracy of our results is very satisfactory in
all cases. In order to illustrate the applications of the tech-
nique proposed in this paper, several structures are ana-
lyzed and discussed in the next paragraphs.

In Fig. 3, we show the normalized wavelength, N /\g
(= ko/B), —N is the free space wavelength-, and atten-
uation factor, «, for a MIS configuration consisting of a
boxed microstrip on Si-SiO, substrate. Three different
values of Si conductivity are considered and some exper-
imental data reported in {6] are included. By comparing
with the results reported in [Fig. 3 in [12]] for the same
structure, we can conclude that the agreement of our re-
sults with experimental data is slightly more satisfactory
than those provided by spatial-domain or finite-elements
methods. The slow-wave region is characterized by a large
(M/Ny << 1) frequency-independent slow-wave factor
and by an attenuation constant which is proportional to
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Fig. 2. Relative error in approximations of GZ for several conductivity
and frequency values. The structure is the same that in Fig. 3. (a) Operating
frequency: 10 GHz. (b) Conductivity: o, = 0.005(Qmm)~".
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Fig. 3. Dispersion of the normalized wavelength and attenuation factor for
a shielded MIS structure for different values of ¢,. Dimensions: a = 10
mm., by = 0.25mm., h, = 1 pum., w = 160 gm. ¢, , = 12, €2 =4, 0,

the square of frequency. When frequency increases, the
structure enters either in the lossy dielectric region (if
is low enough) or in the skin effect region (if o is large).
The characteristic impedance has also been computed by
using the three usual definitions (power-current, voltage-
power and voltage-current):

ZOI = 2P/|I|2, ZOV = IVIZ/ZP*, ZOC = V/[s (16)

being / the longitudinal current flowing on the strip and V
the voltage. Here, V is defined as the path integral of the

electric field from the center of the strip to the ground
plane through a perpendicular straight line. This quantity
is computed by using the algorithm proposed in [28] for
layered structures, and the power flux by means of the
method proposed in this paper. From a computational
point of view, it is important to emphasize that more trial
functions are necessary in voltage than in power compu-
tations, especially in the slow-wave region. This is rea-
sonable from physical intuition. As it was expected, the
results obtained show that all the three definitions (both,
real and imaginary parts) are indistinguishable at low fre-
quencies (see Fig. 4). However, the frequency behavior
differs at higher frequencies. This is because the funda-
mental relation among power, voltage and current (P =
3 V + I*) is not fulfilled by ¥ when defined as the path
integral. In accordance with the discussions in Section
III-B V should be defined from 7 and P. In the following,
we will restrict ourselves to the power/current definition.
Experimental data are also plotted in Fig. 4: good agree-
ment is found for these particular geometrical and elec-
trical parameters.

Livernois et al. [12] point out strong qualitative and
quantitative discrepancies between their spatial domain
results and the SDA results reported in [14]. These dis-
crepancies arise when wide strips and high ¢ are present.
They claim that SDA results are wrong because they are
too far from the ones computed from a parallel-plate
waveguide model. This reasoning is correct since the par-
allel-plate analysis should work very well for wide strips.
However, we have carefully computed the slow-wave fac-
tor for this structure and we have found that our results
are consistent with the parallel-plate waveguide model
(see Fig. 5). In fact, the agreement is better when w in-
creases, as it is expected from a physical argument: the
smaller the skin depth is, the better the parallel-plate
model works. Hence, our results seem to be very reliable.
Wrong SDA data stem essentially from two numerical er-
ror sources. On the one hand, several basis functions of
the kind used in this paper must be retained when wide
strips or high ¢ are involved to correctly approximate the
solution (the results reported in [14] were computed by
using only one function). On the other hand, care must be
taken in the evaluation of the series or integrals appearing
in the spectral analysis, especially when very thin layers
and/or high o materials are involved (as it is the case). In
fact, we have also detected significant differences with
spectral results in [14] even if only one trial function is
used in our computations. This point has been highlighted
in this paper. When an adequate number of trial functions
and Fourier terms are used the results provided by the
method in this paper are closer to the ones computed from
the parallel plate model. We have also observed that the
spatial domain results reported in [12] for the highest value
of o (see Fig. 5) are slightly too high. Similar numerical
error sources could explain this disagreement with our re-
sults.

Finally we present some results for multistrip struc-
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Fig. 4. Frequency behavior of the (a) real and (b) imaginary parts of the
characteristic impedances for the MIS structure in Fig. 3.
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Fig. 5. Comparison of results for the complex propagation constant ob-
tained by means of three differents methods. Single MIS structure. Dimen-
sions: @ = 10 mm., &, = 0.25mm., h, = l pm., w = 0.6 mm. ¢, |, = 12,
€., = 4, 0, = 0. (a) Normalized wavelength. (b) Attenuation factor.

tures. Two shielded symmetric coupled microstrips on
three layer substrate—insulator-semiconductor-semi-in-
sulator—are first studied. This structure presents two very
thin layers located under the conductors. The results for
B/ky and o compares favorably with data in [16], where
a SDA is also used. Modal impedances agree satisfactor-
ily for the less dispersive mode—odd mode-but signifi-
cant discrepancies are observed at high » with even mode

data, as it can be seen in Fig. 6. In Fig. 7 we show results -

for a three conductor structure in a three layers configu-
ration. In Fig. 7(a), slow-wave factors and attenuations
are plotted for the three fundamental propagating modes.
The plus, minus and zero signs (+, —, 0), stand for the
sense of the current flow, ,, on the conductors. Mode #1
presents the lowest 3/ky and relatively high attenuation
in the low-frequency range, owing to the existence of an
important electric field in the semiconductor layer. At high
frequencies (dielectric modes propagate), it is the field
distribution corresponding to mode #3 which shows the
highest attenuation factor. Real and imaginary parts of the
modal 1mpedance [Z;] (ith conductor, jth mode), are de-
picted in 7(b) and (c). It should be noticed that, as in the
single microstrip case, the propagation as dielectric mode,
(8/ky ~ 5), for each fundamental mode is preceded for

120 — s 35
100 ~1%°
425
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T80 J 5
5l 115
[+
40 -
. i 410
RelZ..
ol e[Z;] odd o
45
0 M MR e
e 10 100
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Fig. 6. Real and imaginary parts of modal impedances for two shielded
symmetric coupled microstrip on three layer substrate. Dimensions: a = 2
mm., h, —-Olmm h, = 0.6 pm., h3—04um.,w= 10 um., s = 10
BN, € = €2 = €5 = 127 (AsGa); oy = 107 (@mm)™'; o, =
10(Qmm)~"'; ¢; = 0.

a maximum in the imaginary part of the corresponding
modal impedances For design applications, mode current
ratios (R; / I,;), should be provided if a three-con-
ductors transmlssmn line is considered [22]. Obviously,
these parameters are known once the current eigenvectors
have been computed.
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V. CONCLUSION

In this paper we have presented a method based on the
spectral domain formulation to efficiently analyze single
and multiconductor microstrip transmission lines used in
MMIC and high-speed VLSI circuits. Certain numerical
convergence problems arising in the study of this kind of
transmission structures are treated with detail. Approxi-
mate expressions for the Green’s dyad are used to dras-
tically improve the convergence of the Fourier series in-
volved in the computations. Important CPU time savings
are achieved with this procedure. The accuracy and reli-
ability of the results are also meaningfully enhanced. In
addition, a general method to compute the power flux
through the cross section of the structure has been devel-
oped. The power flowing for each propagating mode is
expressed as a function of the surface current density on
the strips (which is known from the Galerkin’s analysis).
The expression for the power is valid for an arbitrary
number of anisotropic and/or semiconductor {ayers. Once
modal powers and current eigenvectors are computed,
voltage vectors are defined from the relation [P] = 3 [V]T
- [I]* and the modal orthogonality condition. Modal
impedances are obtained now in the usual way as the volt-
age/current ratio for each line and each mode.

APPENDIX 1

The functions appearing in the definition of the approx-
imate spectral Green’s dyad (6), are computed as follows
(superscript + stands for M + 1 < i < N, and — for 1
< [ = M, that is, they refer to layers above and below
the Mth interface respectively):

a) ®(n) = By () + D4 () (17)
BE(n) = 1 + coth (a”h,-)dfil(n);
coth (o, h;) + &7 ()

&7 (1) = coth (ahy); Bf(n) = coth (ahy). - (18)

b) e(n) = ey 1 Eyp1(n) + ey Ey(n) (19
p & + o1 EE (n) coth [, el h;]
i (n) - eiilEiiil + €; coth [ane;y/,?h,’] ’

1/2 €y '
€ = (Exj'eyj) o Cy T T (20)

i
E7(n) = coth [a,eif?]; ER (n) = coth [a,elf2hy].

The general expressions for the functions appearing in
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the second order approximation are

225

c) &n) = GyM+[fM+1EAJ2+1(n) + EnyMEA}(n) = Bu+1(m) — Eun) 2D
_ (Eyw = € Der— 1 En—1(n) ey cosch® [, ey by
Ey(n) = 172 = = M =1
[ep coth [, €0 Ay ] + ey 1 Epr— ()]
(EyMH - EyM+2)EM+2E1I-;+2(n)612VI+l COSCh2 [ane)lcy/13+lhh/l+l]
() = M+ 1#N). 22
Mt [€p4 1 coth [ane)lc_\{43+1hM+I] + ey Ei ol ( )
€pys 1 €ms 1 Ema1(®) €6, En(n)
d) () = DRI M Ayei() = Ay () (23)
€M +1 €m
(e, €x_ | — €, _ €, €3)Ey_, cosch? (oz,,ejw/zh )
AM= ymCzmCM— 1 M- “zm l1/2M M-1 _ 2,M M (qu 1) (24)
ey —1len coth (ayepyhy) + ey 1 Ep—1]
Ay = (GYM+I62M+1612W+2 - E,VM+ZEZM+216/§4+1)EA_4+2 cosch? (T’le;¥§+1hM+l) M+1%N)
ep+olen 1 coth (o, €y, Py e 1) + €yroE 0l '
e) ¥(n) = xpu+ 1M + xp(m) — Yy i(n) — ¥y (n) (25)
¥, = 1 Tidn)
M coth (oyhy) + o) UV
_ en cosch (o, hy) cosch (o exfyt ha) [T (1) + xaq- 1(m)] M%)
€y coth (ane)lry/nth) + ey 1Ey-1(n)
¥ = ! Ty ()
MU coth (b o 1) + Bagea(m) (1T
M+ cosch (a,hy 4 1) COSCfl/z(anf:lcy/nfﬂhMﬂ) [Tzltlzlj:l(”) ‘+ XM+2(”)]} M+ 1% N) 26)
€ +1 COth (@, €x)y, A1) + €yr2Enrsa(n)
€, — € -
xi(n) = Ef (m) == + ¢ FF L2
€, — €, €, — €
¢; cosch (o, h;) cosch («, e,‘cy/zhi)
F* = coth (o, h;) — :
P ot ot (e + €51 B )
Fi(n) = coth (a,h,); Fy(n) = coth (o, hy).
, 1724 Sa — G 2 €&, T &
T/ (n) = ¢ cosch (a,h,) cosch (a,e, " h,) + ¢, cosch” (a,h,)
. X1 - Vi Xi - ey:
€, — € €, — €
T/(n) = ¢ coth (ayell*h;) ——= + ¢, coth (a,h) ———
€, — €, €, — €,
f) 8(n) = ey BPurs1(0) + €, Py (M) — Oy 1(m) — Oy (n) (27)
(euy — €2y ) ®iz— 1) cosch? (v, Tryy)
eM(n)= M -1 FM-1 e . M (Mqtl)
[coth (at,hpy) + By ()]
et — Eme) Piria(n) cosch? (o, s 1)
O () = (Cor = Cunsd) Bar vl T M +1#N) 28)

[coth (ctufar 1) + ®j 42

Some of the expressions above are valid for M # 1 and

M+1=NIM=1orM+ 1= N those expressions  volve the same recurrence relations used in the computa-

are zCro.

tion of G(n, w). Thus, redundant computations can be

It must be emphasized that the above expressions in-  avoided.
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APPENDIX 1I

In this appendix we define the [M 481 matrices appear-
ing in power computations. Let [K;(n)] the transverse
propagation matrix associated to the ith layer such as de-
fined in [4], and [Q;(n)] its diagonalization matrix:

Yo O .
(K] = [Q.] - [ i, (@] 29

0

Y,

being Ye (1), ¥r, (1) the eigenvalues of [K;(n)]. Then, the
[M{‘], M f ] matrices in (10) are computed in the follow-
ing way:

M) = (Q17Y - [Am)] - AG17H*  (30)
MEm] = Q17" - [B.w] - AA17Y* (3D
The elements of [4,] and [B,] matrices are
1 v
A = 5 | (Cu), + Du)i 5 | Y coth (v, h)
ki Y »
2
- [(Ckl)i + (Du); 'Y—sl} i coth (v h, )} (32)
Vi

1 %2
Bu) = 5——% {I:(Ckl)i + (Dy); ﬂz_} Yi, cosch (v, h,)
Y, — Y, w

2
- [(Ckl)i + (Dy); %} vif cosch ([ h, )}

Y

&, 1=1,2) (33)
where h; is the thickness of the ith layer; v, = aj + °
— kje,, and 7, v, stand for the eigenvalues 7., v, re-
spectively. (Cy); and (Dy,); are elements of the following
matrices:

Cl =107 {7 _a"} * 34)

[C;] = [@] 0 0 [0.] (
an

D1 =107 - " C[yIF - e (35)

being [Y;] the admittance matrix defined in [4], which re-
lates the tangential components of the electric and mag-
netic fields in the spectral domain.

AppENDIX III
The spectral components of the tangential electric field
at the jth interface can be expressed in terms of the elec-
tric field at the strips interface (Mth) in the following way:

E = [T(), - By (36)

where [T(n)]; matrix is given by

[ M
(=¥~ I [LP@lely - (8- 14
k=j+1
ifj <M
[T, (n) = § j
G R S L TR P () T

\ ifj>M (37

The [L?],_, and [LY]y_, matrices are defined in [4].
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